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We consider the Cauchy problem for the equation of the elastoplastic mode of filtration. 
We prove that a solution in the form of an instantaneous source function cannot be 
obtained for this equation in a natural manner. 

We turn our attention to the equation 

(1) 

arising in the course of description of the elastoplastic mode of filtration [I. ‘t] and con- 
sider the solution of the Cauchy problem for this equation 

u If=0 = cp.(z) (2) 

in the strip Rr (I z 1 ( 00, 0 < t < T) of arbitrary, fixed width T. 
In [3] it was proved that if the function v(s) is bounded on the whole straight line 

and has a generalized derivative @(z) E. ,&(- 00, OS), there exists a unique continu- 

ous solution u(z, 1) of (1) bounded ln R T , satisfying the condition (2) and possessing 

continuous derivatives &z/&, &z/&z and d2u/&zz for t > 0. 
In the present paper we show that a solution of (1) in form of an instantaneous source 

function, i.e. a solution satisfying the condition 

U It=:, 77 6 (t) (3) 
cannot be constructed. 

Below we consider delta-form sequences of smooth functions. We shall say that the 

sequence q X(Z) converges to 6(s), if a, 

s (Pk (d f (2) ds ---c f(O) 

holds for any infinitely differentiablezction f(z) decreasing with 1 z 1 + CO faster than 

exp (- mz?) for any arbitrary m , 
For or (t) --t 6(z) it is sufficient to have 

for any fixed o < 0 and b > 0 . 
Theorem 1. Let the functional sequence qk (z) satisfy the conditions (4). We 

assume that each function qk (3) > 0 is bounded on the whole straight line and has the 

derivative (P,,‘(Z) E &(- 00, m). 
Then, for any k there exists a continuous solution ~~(5, t) of (1) bounded in RT and 

satisfying the condition 
Uk I:=0 = cpk(4 (5) 

and we have 
;Euk (50, 1,) = 0 (?,o), ~~%&,tO) = 00 (p< 0) 

at any point (z,,, ta) E RT. 
We shall need several auxiliary lemmas for the proof of this theorem. 

Lemma 1. Let ut (z,l) and ~(2, 2) be two continuous solutions of (1) bounded 
in RT and satisfying the respective conditions 
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4 Lo = ‘Pl(4, h It=0 = (pa (4 
and let continuous derivatives &a, / at and &, / a;t2 (i = 1, 2) exist for t > 0. 
Then 

.%(G t) < Ks(G 0 for %(a$ < R(z) 

Proof. Let 1 u1 (z, t) 1 6 M and 1 I+ (z, t) 1 < M in R,. We shall consider the region 

Q([ z 1 <L, 0 < t < 2’) where L is a number which, in the following, shall be gradually 

increased. We set 
4M za 

F(% r)=T ( T+&L). z (2, 2) = [P (z, t) - R (z, r) + ua (2, r)] e-at (X> 0) 

Function z (z, t) satisfies the equation 

(a - I P I) at ~+~(z-jel,z-~ = 

=, p,e-at[w~-p +G3nfJ(1$$1-1 %I)] (6) 

and the latter implies that z (2, t) cannot have a negative minimum within P. Indeed, 
the function in the square brackets and a (ur - t(a) I at have the same sign. But 

a (Q--u~) aF a2 
at =Y&--+‘-?Jhze~t>O 

Therefore, the point of negative minimum in (6) should have a positive function on 

its right and a negative one on its left, which is clearly not possible. In addition, z (z, 1) 

satisfies the conditions 
a (2, 0) z 09 z (L, t) > 0, z(--L,G>O 

It therefore follows that z (z, t) >, 0 in Q and consequently 

Ul (z, 2) - Uz (2, r) <L’ (0, 2) E Q 

Passing to the limit as L -N w we find that at each fixed point (2, t) we have 

Ul (2, r) - r+r (2, r) < 0 

Lemma 2. Let U(z, t) be a continuous solution of (1) satisfying the condition (2), 

bounded in RT , v(z, t) a continuous solution of 

gi = (Q + 8) g (7) 
bounded ln RT and satisfying the condition 

vltti = cpl(4 (8) 

and w(z, t) a continuous solution of 

~=(Nwg (9) 
bounded in RT and satisfying the condition 

w It=0 = w(z) (IO) 

We assume that the functions ~(5, t), u(z, 2) and w(z, t) have continuous derivatives 
appearing in the equations. Then 

Proof. Consider the case 6 > 0 and set ~1 (z, t) = u (t, t) - v (I, t). We clearly 
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have 
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From this it follows that the maximum principle ( [4], Theorem 8. Sect. 1) is valid for 

the function VI (z, t) . According to this principle, vl (2, t) < 0. Setting now ly (2, t)= 

= U (5, t) - U, (I, t) we obtain 

wl It* = cp (T) - 91 (4 6 0 

Consequently. the maximum principle holds also for wl (2, t) , i.e. (4 (z, t) ( 0. This 
yields both inequalities (11). Inequalities (1’2) can be proved in a similar manner. 

Let us now denote by V (z, t, E) the basic solution of (7) and by W(s, t, E) the 
basic solution of (9). We know that 

Let us set 

z(2, t) = min[V(G t,O), IV& r, 011, zt(z, t) = max [V(Z, t, 0), JQ, t, O)j 
and write the following properties of these functions which we shall need later 

03 co 

s_ 
z(z,t)dz=B<1, !_ zr(5, t)dz = Bi>1 @>O) (13) 

Here B and B1 are independent of t , but depend on the values of CC and fi . Let us 
verify e. g. the first of these inequalities 

OFJ 
1 

2Jf/nt s c- 
min vu + p exp 

-cc 
co 

1 

=al/n s [ 
min Vc + p exp - -Ys(4a+P) , I’a-PexP-Yyqdy= 

--w 
co 

1 

=F-jG s min if1 (~1, f2 (~11 dy = B 
--03 

(14) 

The integrand function is independent of t, hence B = const. Moreover, 

1 ca 
a, 

Tjz- s 11 (Y) dy = 1 1 
2 v/n 

12 (Y) dy = 1 

therefore 
-cc --io 

1 m 

2 I/n 5 min VI (Y), f~ (Y)I dy < i 
-co 

Lemma 3. Let the sequence of bounded functions gk(z) > 0 satisfy the condi- 
tions (4). Further, let the function uk(z, t) satisfy Eq. (‘7) and the condition 
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and the function w,,(z, t) satisfy Eq. (9) and the condition 

wk if-0 = *k(z) 

Then for any fixed t* > 0 and any E > 0 there exists a k. such that if k > ko, the 

following inequalities are valid for all z and for t E 1 t*, 1* + 11 : 

(1 - d w, t, 0) - f? < uk(x, t) < (1 + e) v(x, t, 0) •t e 

(1 - e, w(z, ty 0) - & < wk(x, t) < (1 + &) w(z, t, 0) + e 

Proof. We know that m 

hence 

where the constant 6 (0 < 6 < I) will be chosen. 
Let us consider the integral 

Ilk (% t, = i qk (E) V @I ‘, e) 4 
d 

We choose the quantity A large enough to ensure that Y (I, t, E) < l/ce when 

1 I 1 > A, 1 & 1 < i, and t E I:*, r + 11 ; then we choose 6 sufficiently small for 
inequalities 8 v (2, :, c;) 

‘--?I< V(z, 2,O) = =p 
(2zf - V) (2 + P) 

42 <I 
to hold for 

c 
+y 

(15) 

(16) 

the 

Then 
I&Id& IllbA, :E It*, t*+il 

8 

(1 -u)V(z, t, O)-e<O<ILk(z, t)<$ 
s $k (6) e 

-8 

at Izl>A, TV It*, P-l- II 

Since the sequence gk (&) satisfies the conditions (4). we have 
8 

s $k (c;) dc; -+ 1 
3 

This. together with the preceding inequalities implies that there exists kt such, that 

(1 - 4 V @, 4 0) -e < IF (2, 4 <(I + 4 V (2, 1, 0) + t/+3 (k > M 

Since Uk (I, t) > Ilk (t, :), we have 

V& (+, t) >, (1 - e)V (x, t, 0) - e 
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From the conditions (4) as well as from the boundedness of the function V (z, t, 0) 
with t E [t*, t* f I], and for all z and E , it follows that 

la* (2, r) + 18 (2, 1) - 0 as k-+03 

We can therefore find k. > kl such, that for t E it*, r* i- i I, 

vrr (2. t) = zI* + z-2 + z$6 (1 + 4 V (2, 4 0) + e (k > ko) 

This proves both inequalities (15). The estimates (16) can be proved in the similar 
manner. 

Corollary. Fulfillment of the conditions of Lemma 3 means that for any fixed 
t* > 0 and any a > 0 there exists a & such that if k > k,,. the following inequalities 

are valid for all 2 and for t E [t*, t* + 11: 

min [v&& t), w&, t)] < (1 + e)z(& t, + e 

max Iu&, t), w&, 01 > (1 - e) zdz, t) - p 

We shall now pass to the proof of Theorem 1. Let (PJ,(z) be a sequence of functions 

mentioned in the conditions of the theorem. Then, as shown in 133. for any k there exists 
a unique solutiofi U&C, t) of (1). satisfying (5), which is bounded in RF and has continu- 

ous derivatives auk / at, at&k/ ax and asuk / ass when t > 0. From Lemma 1 it fol- 

lows that uk (x, t) > 0. 
Let some value to be fixed, bet us choose t, such, that 1, < t, < t, f 1. 
We shall first consider the case when p > 0. 
We shall prove, that for any integral value of n and for any E E IO, B-’ - i] such 

k,(e, n) and tz E [tl, toI can be found, that for k > ko(e, n) the following inequality 

is vaLid u&, to) < B(1 + e)ln (1 -I- e)z(x, t2) -I- (n f l)e, I x I< 00 (17) 

Proof of the theorem for the case p > 0 follows from this inequality, as the function 
2(X, ts) is bounded for all t, E [tt , t,] and 12 1 < 00, while the constants e and n 
can be chosen, so as to make the quantities [B(l + e)]” and (?t -j- l)e as small as we 

want (B < 1 by (13)). 
Let us now denote by ~(5, t) and wk(x, t) the respective solutions of (7) and (9), 

satisfying the conditions uR(x, 0) = wDk(z, 0) = (Pk(z) 

Let {ri1) be an infinite sequence of positive numbers tending to zero and Tt -f- $f 

+ za + . . . < t; - 2,. We set ~&I.$= B-l ~(5, a)* We can easily confirm that 

conditions (4) hold for the functional sequence g,(x) , i.e. q,(z) - 6(s). Denoting by 

t+*(z, t) and w**(x, t) the respective solutions of (7) and (9) satisfying the conditions 

tI**(r, 0) = Q*(X, 0) = &(z) 

we shall construct a subsequence zi, (1 < m < n) in the following manner. We 

shall choose il sufficiently large for 

min [vi,* (x7 r). Wi,* (2, 1)] < (1 + e) z (x, t) -I- e when E [tr, tI -!-. i] (18) 

to hold. Such i, exists by the corollary to Lemma 3. Further we choose i2 > i, suffi- 
ciently large for min [u*,* (z, Zi,), Wsl* (5, zi,)l < t1 t e)z (X7 %t,) + e 

to hold, and is > iz such that 

min [Vi,* (2, Zf,)q Wf,* (2, ff,)] < (1 + e) z (x7 Tf,) + e 
*............a..- - - 

min [Vi,* (2, Tin_,)9 Will* tzv ri,-l (1% 
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Having thus reached i,,, we shall select the number k, sufficiently large for 

min it+ (2% rin), wk (2, $,,)l < (1 -I- 8) 2 (2, rh) -I- e (k >kd 

to hold. Let us consider the functions uk(z,l) and k > k,. By Lemma 2 we have, for 

all t and t 
t4& 0 Q min It+, 0, ~(5, t)l 

Setting t = Tin,we obtain (20) 

'k (G %& min l”k (2, %,h wk @&)I < (1 + e) 2 (2, Tin) + 8 (k > k,) 

Clearly, the function B(1 + e)t+z (5, t) + a satisfies Eq. (7) and condition 

B (1 + e) Q,* (z, 0) + e = (1 + e) 2 (5, xi,,) + a 

while the function B(1 + a) w,‘, (z, t) + e satisfies (9) and condition 

B (1 + a) vi,* (2, 0) f a = (1 + a) 2 (2~ 7iJ + e 
Therefore from (20) and Lemma 2 it follows that for all z and t > 0 

uk (5, Tin + t) < min [B (1 4- e) uin* (z, t) + e, B (1 + e) win* (2. t) + el = 
= B (i + e) min [vi,* (2, t), IQ,,* (z, t)l -i- e 

Setting t = r{,_r we have 

uk (5, %,, -I- %,_,) f B(i i- E) min [vi,,* (5, %,,_,), IQ,,* (5, rin_))] + e 

which together with (19) yields 

= B(1 + e)?z(s, T t,,_J + B (1 + e) e + e< B (1 + e)‘z (2, rin_,)+ 2e 

The last inequality follows from the fact that B(l -t e) < i. 
Similarly, we can satisfy ourselves that 

t‘k (2, $,, + Ti,,_r + 71,_,) < B4 (1 + a)* 2 (3, %,,_s) + 3a 

Continuing this process we obtain 

~,(~,~~+~~_t+-~~~ + 7<1) < Bn-r (1 + a)- 2 (3, ri,) + ne 

which together with (18) yields 

uk (a& 4, + ‘i,,_t + * . - + ri, $ t, < 

< Bn(l + e)” min [vi,* (5, t), IQ,* (5, t)] -t- ne\( 

< B”(i -t ~Pf(i + 4z(5, 0 + 81 + ne< 
~Bn(l~e)“+lz(z,l)+(n+l)e tE[h,h+iI (21) 

Let US put now t, = t, - (ti, + . . . + ri,). Since T1 + Ts + rs + ...<ts - 

- t,, 
tO-((7i, + T1, + - * * + 7i,)>tO-(tO- tl) = 11 

Moreover we have t, < t, < t, + 1, consequently the estimate (21) can be used 
when t = t,. Thus we have, for k > k,. 

U&Z, to) < (1 + e)n**@s(z, ts) + (n + 1) e 

As was shown before, proof of the theorem for the case fj > 0 follows from the latter 
inequality. 

The theorem is proved for the case p < 0 in the analogous manner and the following 
assertion holds. For any integral IL and for any e E [O, 1 - B,-‘I such k,(e, n) and 
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rs E [tr, to] can be found, that the inequality 

%&9 Gl) > I&(1 - e)l* (1 - a)+, t2) - l&(1 - e)lne(n + 1) (22) 
holds for all z and k > k,(e, n) . 

proof of this inequality is performed as the proof of (17). Relation (22) then yields 
the proof of the theorem of the case /3 < 0. 

Indeed, z(zs, ts) > q > 0 for a fixed r. and for all t, E [tl, to]. Therefore, 
from (22) we obtain Uk(zo, 

to) > [&(I - e)ln [(I - e)q - (n + 1) el 
Let M be any constant and let us choose n sufficiently large to ensure that [B, (1 - 

- e)ln is greater than M for any e < l/s (1--B-:).Such n exists because for all such 
E we have 

&(I - a) > &(i - l/s + ‘I, K’) = l/t (B, + 1) > 1 

Further, keeping n fixed we choose e sufficiently small for the following two inequa- 
lities to hold 

a < ‘Is (1 - B;‘), (1 - e)q - (n + l)e > ‘Id 
With such values of n and e we obtain 

rGxo, to) > l/s Of [k > Me, @I 

Since M has been chosen arbitrarily, 
lim y (zo, to) = 00 
k+ca 

which completes the proof of Theorem 1. 

Theorem 2 cited below asserts, that no function ~(5, t) exists which could be called 
a solution of (1)under the condition (3). We can naturally assume that if such function 
exists, it should be positive, continuous, and should have continuous derivatives for t > 0, 
and should satisfy Eq. (1). Let tk -) 0 as k - 00 and let (~a@) = U(Z, tR). We can 
expect by virtue.of the equation u(z, 0) z a(;~), that the functional sequence (PR(Z) 

satisfies the conditions (4). 

Theorem 2. No positive function ~(5, t) exists, possessing the following proper- 
ties : 

1) its continuous derivatives au / at,. au / ih. and 8% / &I.? exist when t > 0 ; 
2) function u(z, t) satisfies Eq. (1) ; 
3) function U(Z, t) is bounded in any strip (0 < y Q t < 2’); 
4) if tk-‘OaSk .-+ co, then conditions (4) hold for the functional sequence (pk(5) = 

= u(2, tk). 
Proof. Assume that such function u (2, t) exists. Then, for any k , the function 

UR (z, t) = u (z, t + il) is positive, continuous, bounded in R, and satisfies Eq.(l). 

Clearly we have lb& (2, 0) - u (2, fk) =cpk (z) 

The functional sequence qk (z) satisfies the conditions (4). Therefore all conditions 
of Theorem 1 bar qa’ (t) ELa(--30, 00). are fulfilled. But this condition was used in the 

course of proving Theorem 1 only to establish the existence of a solution of (1). which 
would assume the values cpb Iz) at t = 0. In the present case the existence of such 

solution is apparent, namely : uk (z, t) - u (z, t + t&Consequently we can apply Theo- 

rem 1 to the functional sequence UA (2, t). Let (2 o, -&,) be a fixed point belonging to RT. 

Then 

TNS together with the continuity of u (2, t)in@ies that for (=ov to) E R~ 
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Uk t2t 0) = u (2, $1 =qk (2) 
which contradicts the previous a~umption, Q. E. D. 

In conclusion thanks are given to G. I. Barenblatt and V. M, Entov for drawing the 
author’s attention to this problem. 
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Propagation of waves caused by the original rise on the surface of rotating liquid is con- 
sidered. The deformation of the disturbed level proceeds in accordance with the theory 

of long waves. The unsteady part of the wave rise may be treated as a limit superposi- 
tion of standing waves with phases allowing for a complete range of wave numbers. The 

original perturbations are assumed to act in such a manner that, as the distance between 
the nodes decreases, the elementary crests of an arbitrary component take a near-equi- 

librium position, It is permissible to use in such analysis of unsteady wave problems a 
Fourier integral the complex amplitude of which must be determined. Our analysis of 
waves in a channel is based on Sretenskii’s general hydrodynamic analysis of tsunami 

waves on a rotating half-plane p]. 

1. The value of the perturbed level in a channel of constant depth h can be found 
from the wave equation 

~+4”?5=gh(~+~) W) 
in which the initial functions are 

5 (2, Y, 0) = Wr, Y), aC (3, Y, 0) f at = JW* I#) (1.2) 

those perturbed motions that do not result variations of the liquid level in time are not 
considered. 

Assuming shockless initial values of the transverse components of the velocity and 
acceleration, the conditions of impenetrability at the boundaries y = 0, $J = 1 can 


